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It is well known [I] that upon reflection of a compression pulse from a free surface 
or contact boundary with a material of lower acoustic rigidity, tensile stresses develop 
within a body which under certain conditions can lead to its failure by spallation. Dis- 
satisfaction with the results of a static approach to the problem of spallation failure has 
led on the one hand, to a search for new failure criteria, and on the other, to study of 
spallation at the microlevel, with development of a quantitative description of degradations 
and clarification of the role of material microstructure in destructive processes [2]. In 
recent years an approach has been developed to describe spaiiation failure, in which certain 
key variables are introduced into the defining relations (equations of state) with corre- 
sponding kinetic expressions which characterize formation of microcavities at the macrolevel 
[3]. Much attention has been given to one-dimensional problems in both theoretical and ex- 
perimental studies. Numerical modeling of the "simplest" (one-dimensional and quasi-one-di- 
mensional) experiments makes it possible for a more detailed analysis of wave patterns in bodies 
and establishment of the adequacy and limits of applicability of the defining relationships. 
Moreover, numerical realization of models of such experiments does not require solution of 
complex boundary problems, thus reducing to a minimum errors introduced by the numerical 
method of problem solution itself. Carrying out such calculations and comparing the re- 
sults to experiment allows evaluation of the model chosen for the physical process in the 
purest possible way. 

The concept of mechanics of a degraded medium was used in [4] to develop a model of 
failure of solid bodies under dynamic loading. In the present study that model will be 
used for numerical analysis of spallation failure of copper plates in planar rarefaction 
waves, and the results will be compared to the experiments of [5]. 

i. To describe material behavior in the process of nonisothermal e!astoplastic defor- 
mation and damage accumulation the equations of [6] will be used, in which the radius of the 
yield surface depends on the level of accumulated damage. It will be assumed that the de- 
formation tensor includes elastic deformations which are independent of the loading history 
and define the final state of the process, plastic deformations which depend on the loading 
process, and destruction deformations caused by failure of the material as a result of damage 
accumulation, i.e., 

~')--  ~J + ~ + ~ "  ( 1 . 1 )  
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where eij ,e d ij'~p r are delastic' plastic, and destruction components of r respectively 

(c~i = 0, aij = Cm~ij, Sm = cii/3, i, j = i, 2, 3). 

Upon change in stresses the elastic deformations obey a generalized Hooke's law, and with 
change in temperature follow the temperature expansion law 

eij=,-Td- c ----u-e~j; e~=Uf-am----f-(e~--mT)+m~ +~r. ( i . 2 )  

Here K = K(T) and G = G(T) a r e  f u n c t i o n s  o f  t e m p e r a t u r e  T; S i j  = u i j  - Om6ij a r e  d e v i a t o r ,  
and o m = u i i / 3  , s p h e r i c a l  components  o f  t h e  s t r e s s  t e n s o r  o i j ;  e i j  = c i j  -- em6ij  i s  t h e  s m a l l  d e f o r -  
m a t i o n  t e n s o r  d e v i a t o r ;  c m = e l i / 3  i s  t h e  volume d e f o r m a t i o n  o f  t h e  medium; K i s  t h e  volume 
c o m p r e s s i o n  modu lus ;  G i s  t h e  s h e a r  modulus ;  and a i s  t h e  l i n e a r  t h e r m a l  e x p a n s i o n  c o e f f i c i e n t  
o f  t h e  m a t e r i a l  m a t r i x .  

We w r i t e  t h e  e q u a t i o n  o f  t h e  y i e l d  s u r f a c e  i n  t h e  Mises  fo rm:  

( s ~s  - o~j) ( s ~  - p~s) = ( t  - v ~ ) ~ R ~ .  ( 1 . 3 )  
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According to the associated flow law, we have 

e~ = ~ (S~ -- p~j), ( 1 . 4 )  

where X is a proportionality coefficient determined from the condition of passage of the in- 
t 

stantaneous yield surface through the tip of the load vector; Rp = R~+ ]qTdt is the current 
t 0 

radius of the yield surface; pcj =p~ + ]ge~dt are the coordinates of its center; g and q are 
0 

experimentally determinedparameters [6]. 

The rate of change of the destructive deformation component is related to the rate of 
change of the relative volume of cavities by the expression [2] 

~ = 0/3) V J ( l  - -  V~). ( 1 . 5 )  

We w r i t e  t h e  e v o l u t i o n  e q u a t i o n  f o r  t h e  d e g r a d a t i o n  in  t h e  form 

Here 

= / - -  FO%) hp, sign(p,), A p , > O ,  ( 1 . 6 )  

f~ [o, Ap~ <o. 

F(V,~)---- ~ l A p ~ = ] l p ~ l  Po 
V~ -u3 (t - V~) -2/3, Vv > V, (t - v,,) n ' p~ > O; 

p, = K ( I / V .  - -  1)+ 3 K ~ ( T  - -  To) ; 

V s is the relative volume of the material matrix; Ps is the pressure in the solid component 
of the material; T - T O is the temperature change from T O to T; P0, q, n are parameters of 
the model. 

Reduction in strength of the material due to appearance of microdefects is considered 
by introducing effective moduli of elasticity [4]: 

t 

S~ = 2G(eij -- e~), e~j = ye~dt ,  
0 

- -  d To)-- 
0 

6K + 12G V ~. o where G = G (l --  Yv) i 9 ~ - ~  -v},  K = 4GK (i -- V,)/(4G + oKVv). 

With c o n s i d e r a t i o n  o f  d e g r a d a t i o n  we w r i t e  t h e  m a t e r i a l  s t r e n g t h  c r i t e r i o n  in  t h e  form 

' '  [ 
-- --v~) ~, (1.7) 

V* ] ] 
(Jzo is the first, J2o, the second invariant of the stress tensor; and o,, T, are the strength 
limits of the material for tension and shear). 

Equations of state (1.1)-(1.5) together with the equation of cavity kinetics (1.6) and 
the failure criterion (1.7) describe the processes of nonisothermal elastoplastic deformation 
and damage accumulation up to the stage of macrocrack formation. 

2. In [5] the problem of collision at a velocity of 185 m/sec of type OFHC copper 
plates 0.2 and 0.9 cm thick was solved. An oscillogram of the velocity of the target-free 
surface was presented. A model was proposed to describe spallation in which failure was 
represented as a process of formation, growth, and merger of micropores. 

Below we will present a numerical analysis of this problem, obtained using the expres- 
sions presented above. To integrate the system we use an explicit finite difference scheme 
in Lagrangian variables, introducing an artificial viscosity in shock compression regions [7]. 

The calculations were preceded by an analysis of the effect of the finite difference 
scheme parameters (spatial and time steps) upon the results. The step values were selected 
such that their effect on the results obtained was minimal. A grid with spatial step Ax = 
0.01 cm and time step At = 0.008 usec was used. The kinetic parameters of the model of [4] 
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were determined by comparing experimental data with the calculations. The comparison was 
based on the principle that the model used should describe the history of the target-free 
surface velocity, since that history contains information on the kinetics of the failure 
process and the stresses acting therein. 

In Fig. 1 the abscissa represents time, and the ordinate the velocity of motion of the 
target rear surface (the solid line represents the numerical results of the present study, 
the dashes, the experimental data of [5]). The good agreement of experiment and theory is 
evident. These and following calculations were obtained using the following data for copper: 
density p = 8.92 g/cm a, shear modulus G = 48.4 GPa; volume compression modulus K = 136.4 
GPa; yield strength o s = 0.2 GPa; hardening modulus g = 0.9 GPa, with kinetic parameters of 
the model of [4] as follows: P0 = 0.5 GPa, q = 40 Pa.sec, n = 0.5, o, = 12 GPa, ~, = I0 GPa. 

In order to study model sensitivity to change in the collision velocity, and also to 
verify the accuracy of kinetic parameter determination, a series of calculations were per- 
formed for interaction of 0.2 and 0.9 cm thick copper plates at various collision velocities. 

Collision conditions and calculation results are presented in Figs. 2, 3, and Table i, 
where u 0 is the velocity of the striker plate, o_ is the calculated maximum value of com- 
pressive stresses in the target, o+ is the amplitude of the tensile stress in the spallation 
plane, u I is the calculated maximum velocity of the target-free surface, u 2 and u 3 are the 
velocities at the first minimum and second maximum, respectively, R is the degree of degrada- 
tion, defined in [8], of is the value of the failure stress [9]. 

Figure 2 shows the change over time of stress and relative cavity volume in the spalla- 
tion plane, while Fig. 3 shows the velocity of the target-free surface for various collision 
velocities. The solid lines of Fig. 3 are calculation results obtained herein, while the 
dashes are numerical results of [5]. Curve numbering in Figs. 2, 3 corresponds to the vari- 
ants listed in Table I. 

Upon interaction of the striker and target compression waves move in both directions 
from the contact boundary, with amplitude determined by the collision velocity. Reflecting 
from the free surface in the form of oppositely directed unloading waves, they created a 
region within the target subject to tensile stress. When the pressure reaches a threshold 
value P0 the process of damage accumulation begins. With growth in damage density a spalla- 
tion impulse propagates in both directions from the failure zone. 

It is evident from Fig. 2 that the rate of increase of relative cavity volume increases 
with intensity of the interaction. For a collision with u 0 = 50 m/sec only insignificant 
micro-discontinuities are formed (V v = 0.0381), the appearance of which has practically no 
effect on the stress-deformed state. When a macrocrack is formed in the target (curves 2-5, 
Figs. 2, 3), two distinct segments can be distinguished in the curve of relative pore volume 
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TABLE 1 

Variant t Uo,m/sec 
<I (7+ ~2 2 I/3 

o], GPa 
GPa. m/sec 

1 [ 50 0,95 0,80 48 5,5 -- 0,115 -- 

2 ] 100 t,85 1,55 96 29 61 0,635 1,20 

3 f 200 3,65 2,40 t 9 7  t21 t67 0.844 t,36 

4 I 300 5,47 2.9t 298 2t5 266 0,899 1,48 

5 500 9,17 3,05 500 4t5 466 0,932 1,52 

vs time, on the first of which (V v ~ 0.3) the growth rate is lower than on the second (when 
V v reaches a value of the order of magnitude of 0.3 the merger process begins -- breakage of 
the remaining continuous intervals between pores, which leads to an abrupt increase in the 
rate of growth of their relative volume). It then develops that the amplitude of tensile 
stresses in the failure plane increases much more slowly than the amplitude of the compres- 
sion pulse. Thus, for change in collision velocity from 50 to 500 m/sec the value of o+ 
increases from 0.8 to 3.05 GPa, while o_ increases from 0.95 to 9.17 GPa. This is apparently 
due to the effect of the growing microdefects on the character of material deformation. 

Determining the thickness of the spallation lamina is of importance in studying the 
failure processes. It should be noted that pores develop in a large number of elements of 
the finite difference grid, althrough their highest concentration (V v > 0.3) occurs in a quite 
narrow zone (0.67 ~ x ~ 0.71 cm), which is where merger of micropores and formation of the 
spallation surface occur. Thus, the position of the main crack in variants 2-5 coincides 
with the data of [5] with good accuracy. 

The failure stress value [9] and the degree of material damage [8] are often found by 
direct processing of the target-free surface velocity. 

The critical stress value is given by the expression 

ol = 0,5pc (zq --  u2) ( 2 . 1 )  

(where  c i s  t h e  v e l o c i t y  o f  e l a s t i c  l o n g i t u d i n a l  wave p r o p a g a t i o n ) .  

R e s u l t s  o f  o f  c a l c u l a t i o n s  w i t h  Eq. ( 2 . 1 )  a r e  g i v e n  in  T a b l e  1. I t  i s  e v i d e n t  t h a t  t h e  
o f  v a l u e  depends  on c o l l i s i o n  v e l o c i t y  ( i n c r e a s i n g  w i t h  i n c r e a s e  in  c o l l i s i o n  v e l o c i t y ) ,  w h i l e  
i t s  l owe r  l i m i t  o f  = 1 .2  GPa c o i n c i d e s  w i t h  r e s u l t s  o f  s p a l l a t i o n  s t r e n g t h  measu remen t s  in  
OFHC c o p p e r  [ 1 0 ] .  A l t h o u g h  t h i s  d e p e n d e n c e  weakens  w i t h  f u r t h e r  i n c r e a s e  i n  c o l l i s i o n  v e l o c i t y  
( f o r  a change  in  c o l l i s i o n  v e l o c i t y  f rom 100 t o  300 m / sec  t h e  v a l u e  o f  o f  i n c r e a s e s  f rom 1 .20  
t o  1 .48  GPa, w h i l e  f o r  an i n c r e a s e  in  v e l o c i t y  f rom 300 t o  500 m / sec  i t  i n c r e a s e s  o n l y  f rom 
1 .48  t o  1 .52  GPa) i t  i s  c l e a r  t h a t  Eq. ( 2 . 1 )  must  be u s e d  w i t h  c a u t i o n .  

To e s t i m a t e  t h e  d e g r e e  o f  m a t e r i a l  damage [8] p r o p o s e d  t h e  p a r a m e t e r  

is used. R = ua/~, 0 < R < i~ (2.2) 

It was noted in [8] that R = 0.5 corresponds to incipient spallation. It is evident 
(see Table i) that with increase in collision velocity the value of R increases. Comparison 
of R to the relative cavity volume V v (Fig. 2) shows that correlation occurs only up to a 
certain limit (before formation of a macrocrack in the material). This can apparently be 
explained by the fact that, depending on collision conditions and the physicomechanical prop- 
erties of the bodies considered, formation of a spallation surface may occur at different de- 
grees of damage [2]. Thus, according to the data of [ii], the damage level at which forma- 
tion of macrocracks occurs can vary over the range 0.2 to 0.8. 
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PROPAGATION OF SHOCK WAVES IN POLYDISPERSE GAS SUSPENSIONS 

A. G. Kutushev and S. P. Rodionov UDC 532.529:518.5 

Actual gas suspensions are always polydisperse, i.e., they contain particles of dif- 
ferent sizes. The presence of only one or a few particle fractions, each of which contains 
particles of the same size, is presumed for the description of particle motion in most of the 
presently known models of gas suspensions [1-4]. The drawback of such a description is that 
the actual continuous size distribution of the particles is ignored. The equations of motion 
of polydisperse gas suspensions with a continuous particle size distribution function have 
been considered in a linear (acoustic) approximation in [5, 6]. It was shown in [6] that 
the motion of a polydisperse gas suspension cannot be described completely, in general, using 
a model of a monodisperse gas suspension. The problem of describing the motion of a poly- 
disperse gas suspension with a continuous particle size distribution function behind non- 
linear (shock) waves arises in this connection. 

In the present paper we obtain a system of integrodifferential equations of motion of 
an inert, polydisperse gas suspension with a continuous particle size distribution function 
with allowance for collisions between particles of different sizes. On the basis of the 
equations derived and the method developed for their numerical solution, we calculate the 
structure and damping of shocks in polydisperse gas suspensions. We establish the satis- 
factory agreement between the calculated data and the results of [7, 8]. We show that the 
structure of shocks in polydisperse gas suspensions depends to a considerable extent on the 
disperse composition of the ensemble of particles. 

i. Basic Equations. By analogy with [5, 6], a polydisperse gas suspension is assumed 
to consist of a collection of an infinite number of monodisperse fractions of spherical in- 
compressible particles, the radius of which is in the interval from a to a + da. The number 
of particles in one such fraction per unit volume is 

d ~ = R ( a ,  x, t)da, 

where  x i s  t h e  s p a t i a l  c o o r d i n a t e  o f  t h e  p a r t i c l e s ;  t i s  t i m e ;  N i s  t h e  s i z e  d i s t r i b u t i o n  
f u n c t i o n  o f  t h e  p a r t i c l e s .  The t o t a l  number  o f  p a r t i c l e s  o f  a l l  s i z e s  p e r  u n i t  vo lume  o f  t h e  
m i x t u r e  i s  

amax 

n =  N (a, x, t) da 
amin 
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